Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

2017-03-28
2017-01-0967
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Technical Paper

Paint Bake Influence on AA7075 and AA7085

2017-03-28
2017-01-1265
The typical paint bake cycle includes multiple ramps and dwells of temperature through e-coat, paint, and clear coat with exposure equivalent to approximately 190°C for up to 60 minutes. 7xxx-series aluminum alloys are heat treatable, additional thermal exposure such as a paint bake cycle could alter the material properties. Therefore, this study investigates the response of three 7xxx-series aluminum alloys with respect to conductivity, hardness, and yield strength when exposed to three oven curing cycles of a typical automotive paint operation. The results have indicated that alloy composition and artificial aging practice influence the material response to the various paint bake cycles.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

2017-03-28
2017-01-1208
This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Technical Paper

Full Scale Burn Test of Four Aluminum Body Ford F-150’s

2017-03-28
2017-01-1355
Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
Technical Paper

Evolution of Engine Air Induction System Hydrocarbon Traps

2017-03-28
2017-01-1014
Engine air induction systems hydrocarbon trap (HC trap) designs to limit evaporative fuel emissions, have evolved over time. This paper discusses a range of HC traps that have evolved in engine air induction systems. (AIS) The early zeolite flow through HC trap utilized an exhaust catalyst technology internal stainless steel furnace brazed substrate coated with zeolite media. This HC trap was installed in the AIS clean air tube. This design was heavy, complicated, and expensive but met the urgency of the implementation of the new evaporative emissions regulation. The latest Ford Motor Company HC trap is a simple plastic tray containing activated carbon with breathable non-woven polyester cover. This design has been made common across multiple vehicle lines with planned production annual volume in the millions. The cost of the latest HC trap bypass design is approximately 5% of the original stainless steel zeolite flow through HC trap.
Journal Article

Stress-Strain Relations for Nodular Cast Irons with Different Graphite Volume Fractions under Tension and Compression

2017-03-28
2017-01-0399
In this paper, the results of finite element analyses for nodular cast irons with different volume fractions of graphite particles based on an axisymmetric unit cell model under uniaxial compression and tension are presented. The experimental compressive stress-strain data for a nodular cast iron with the volume fraction of graphite particles of 4.5% are available for use as the baseline material data. The elastic-plastic stress-strain relation for the matrix of the cast iron is estimated based on the experimental compressive stress-strain curve of the cast iron with the rule of mixture. The elastic-plastic stress-strain relation for graphite particles is obtained from the literature. The compressive stress-strain curve for the cast iron based on the axisymmetric unit cell model with the use of the von Mises yield function was then obtained computationally and compared well with the compressive stress-strain relation obtained from the experiment.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Analysis of Tool Wear for Trimming of DP980 Sheet Metal Blanks

2017-03-28
2017-01-0302
In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to discuss the methodology of analyzing die wear for trimming operations of UHSS components and illustrate it with some examples of tool wear analysis for trimming 1.5mm thick DP980 steel.
Journal Article

CAE Method for Evaluating Mechanical Performance of Battery Packs under Mechanical Shock Testing

2017-03-28
2017-01-1193
Mechanical shock tests for lithium metal and lithium-ion batteries often require that each cell or battery pack be subjected to multiple shocks in the positive and negative directions, of three mutually perpendicular orientations. This paper focuses on the no-disassembly requirement of those testing conditions and on the CAE methodology specifically developed to perform this assessment. Ford Motor Company developed a CAE analysis method to simulate this type of test and assess the possibility of cell dislodging. This CAE method helps identify and diagnose potential failure modes, thus guiding the Design Team in developing a strategy to meet the required performance under shock test loads. The final CAE-driven design focuses on the structural requirement and optimization, and leads to cost savings without compromising cell or pack mechanical performance.
Journal Article

Modeling of Rivets Using a Cohesive Approach for Crash Simulation of Vehicles in RADIOSS

2017-03-28
2017-01-1472
Rivets, especially self-piercing rivets (SPR), are a primary joining technology used in aluminum bodied vehicles. SPR are mechanical joining elements used to connect sheets to create a body in white (BiW) structure. To ensure the structural performance of a vehicle in crash load cases it is necessary to describe physical occurring failure modes under overloading conditions in simulations. One failure mode which needs to be predicted precisely by a crash simulation is joint separation. Within crash simulations a detailed analysis of a SPR joint would require a very high computational effort. The conflict between a detailed SPR joint and a macroscopic vehicle model needs to be solved by developing an approach that can handle an accurate macroscopic prediction of SPR behavior with a defined strength level with less computational effort. One approach is using a cohesive material model for a SPR connection. The paper describes cohesive element characteristics and calibration effort.
Journal Article

Damping properties and NVH Modal Analysis Results of Carbon Fiber Composite Vehicle Components

2017-03-28
2017-01-0500
With the continuing challenges of future fuel economy targets carbon fiber composite materials are one facet of a lightweighting strategy to enable reduced fuel consumption. In general, use of lightweight materials such as carbon fiber composites in vehicle design generates vehicle NVH performance degradation. To address this potential issue at the design phase, there is a need to develop correlated CAE models for carbon fiber vehicle parts to evaluate the NVH impact of carbon fiber composite material use in vehicle design. To develop correlated CAE models for lightweight vehicle design with the use of carbon fiber composite vehicle body parts, an experimental study was conducted to determine the material and NVH characteristics of the carbon fiber composite materials. In this paper, the damping properties and NVH modal analysis results for structural carbon fiber thermoset composite panels and body parts (B-pillar upper insert and B-pillar lower insert) is presented.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
Journal Article

Effect of Thermal Exposure Time on the Relaxation of Residual Stress in High Pressure Die Cast AM60

2016-04-05
2016-01-0423
Magnesium alloys are becoming more commonly used for large castings with sections of varying thicknesses. During subsequent processing at elevated temperatures, residual stresses may relax and become a potential mechanism for part distortion. This study was conducted to quantify the effects of thermal exposure on residual stresses and relaxation in a high pressure die cast magnesium (AM60) alloy. The goal was to characterize relaxation of residual stresses at temperatures that are commonly experienced by body components during a typical paint bake cycle. A residual stress test sample design and quench technique developed for relaxation were used and a relaxation study was conducted at two exposure temperatures (140°C and 200°C) over a range of exposure times (0.25 to 24 hours). The results indicate that a significant amount of residual stress relaxation occurred very rapidly during exposure at both exposure temperatures.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

Electrochemical Characterization of Coated Self-Piercing Rivets for Magnesium Applications

2016-01-01
2015-01-9085
This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
Technical Paper

Lightweight Materials for Automotive Applications: A Review

2015-09-22
2015-36-0219
Today, in order to optimize the resources usage and reduce the air pollution, the automobile industry is facing new challenges, with the necessity to improve engines fuel economy, enhance vehicles autonomy and reduce the CO2 emission. One of the solution, which is being much researched, is the car components weight reduction. There is a range of new materials that have been developed to attend the new weight standards. Together with lightweight these materials must also deliver acceptable mechanical properties, easy to manufacture and to assembly capability, good appearance, high durability, good cost-benefit relation and in some cases also acceptable impact energy absorption. This paper presents a review of some of the lightweight materials that are being applied in automobiles, like Carbon Fiber, Aluminum Alloy, Magnesium Alloy, Hybrid Material and Polymer Composites.
Technical Paper

Nondestructive Evaluation of Adhesively-Joined Aluminum Alloy Sheets Using an Ultrasonic Array

2015-04-14
2015-01-0702
Adhesive bonding technology has gained ever-increasing significance in automotive industry, especially with the growing use of aluminum (Al) alloy body structures. The variability in thicknesses of the metal and adhesive layers, as well as in joint geometry, of automotive components has presented challenges in nondestructive evaluation of adhesive joints. Though these challenges were recently overcome for steel-adhesive joints using an ultrasonic pulse-echo technique, the difference in acoustic impedances of steel and Al leads to a lack of robustness in utilizing the same algorithm for Al-adhesive joints. Here, we present the results from using a modified version of this technique to inspect Al-adhesive joints in both laboratory and production environments. A 15-MHz, 52-pixel, 10 mm × 10 mm matrix array of ultrasonic transducers was used to obtain ultrasonic pulse echoes from joint interfaces, analysis of which produced C-scan images of the adhesive bead.
X